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Executive Summary 

The future force design of manned ground vehicles (MGV) will place increasing workload 
demands on smaller crews and require a high operational tempo. A significant component of the 
Soldier’s workload will be to maintain situational awareness of the vehicle surroundings using 
indirect vision. While the indirect vision systems are supposed to facilitate increased situational 
awareness, the increase in the amount of information may exceed the crew’s cognitive capacity. 
This project aims to enhance Soldier performance within this context by combining neural and 
physiological measures of perceptual and attentional state to dynamically adapt the presentation 
of information to optimize sustained surveillance of the vehicle perimeter with only minimal 
cognitive workload. The goal is to allow the Soldier to attend to relevant battlefield objects of 
interest using new technologies at the critical interface between the Soldier and the system.  

Technical advances intended to improve situational awareness by providing more information 
about the tactical environment place high demands on the Soldier’s limited-capacity cognitive 
and neural systems. Information display technologies have been developed that filter information 
to prevent performance failures due to information overload. However, these technologies are 
typically rigid with respect to changes in the operator’s physical and cognitive state. Thus, a 
further objective of the project described in this report is to develop an adaptive framework that 
adjusts filtering algorithms to optimize human performance in a variety of operational contexts. 
The work adopts a unique approach that integrates measures of behavior, brain activity, and 
physiology with automated information processing and display algorithms. It leverages basic 
science research conducted at the Institute for Collaborative Biotechnologies (ICB) that uses 
machine learning algorithms to detect performance failures during difficult attentional tasks 
based on brain activity, work done at Science Applications International Corporation (SAIC) 
using pattern classification algorithms to detect threats based on brain activity, and work done at 
the U.S. Army Research Laboratory/Human Research and Engineering Directorate 
(ARL/HRED) that is aimed at understanding the cognitive constraints on performance in crew 
stations. This project will be conducted over three years. In Year 1, which has been completed, 
benchmarks and key display parameters were determined for the performance of attentionally 
demanding tasks. During Year 2, the parameters established in the first year will be instantiated 
in more realistic situations and scenarios. Finally, the work in Year 3 will emphasize the 
optimization of the entire system to improve operator performance. This project reflects an 
integrated partnership that capitalizes on the strengths of the ICB, SAIC, and ARL/HRED co-
investigators. Critically, this work has already helped support High-Definition Cognition in 
Operational Environments (HD-Cog) Army Technology Objective (ATO) technologies. 
Moreover, this work will enhance the work in Brain-computer Interactive Technologies (BCIT) 
in the Translational Neuroscience Branch in ARL/HRED.  
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This report describes the results of 10 separate studies that were conducted by the team in the 
first year. 
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1. Introduction 

With advances in display and sensor technologies and with increased emphasis on a smaller, 
more mobile fighting force, today’s Soldier must deal with a density and complexity of 
information that was unknown in the past. Although the intent of providing Soldiers with more 
information is to improve their situational awareness and operational performance in tactical 
situations, the increased informational content places high demands on limited capacity cognitive 
and neural systems. Various automated filtering algorithms and adaptive displays have been 
developed to help reduce the amount of information presented to the Soldier, but these 
algorithms are rigid and do not adjust based on the user’s cognitive capacity, strategies, and level 
of stress. As a result, their inefficacy can result in suboptimal use. Ultimately, even with high 
performance automated filtering systems, the burden is on the Soldier to act on the information 
in dynamic, complex environments. Therefore, it is critical to develop technologies that will 
allow the integrated human-machine system to be highly adaptive to any context.  

This report documents the results of the first year’s work on a 3-year project to develop an 
approach for the integration of measures of neural activity into complex multi-platform human-
machine systems that will provide real-time classification of cognitive and perceptual states and 
dynamic, adaptive adjustment of information displays to accommodate fluctuations in these 
states. The project builds upon key basic research conducted at the Institute for Collaborative 
Biotechnologies (ICB) applying measures of brain activity to classify performance failures 
during difficult attentional tasks. The aim of the first year of the 3-year project was to establish 
the fundamental parameters for optimizing attentional state classification in dynamic tasks from 
measures of brain activity. These measures will be integrated with other measures of behavioral 
performance and physiology and instantiated in hardware and software to monitor and optimize 
Soldier performance the parameters.  This work has already provided benefit to High-Definition 
Cognition in Operational Environments (HD-Cog) Army Technology Objective (ATO) due to its 
emphasis on an integrated framework that takes into account both the automated systems that 
Soldiers use, as well as measures of performance, neural activity, and physiology. Additionally 
this work will help support Brain-computer Interactive Technologies (BCIT) within the 
Translational Neuroscience Branch of U.S. Army Research Laboratory/Human Research and 
Engineering Directorate (ARL/HRED). 

The work during Year 1 had four research objectives supported by 10 separate research studies.  
These objectives include:  

1. Establish the basic parameters that optimize performance of a system using Rapid Serial 
Visual Presentation (RSVP) to display images for an operator. Consider both behavioral 
performance (the ability of the operator to detect and report target threats) and the 
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performance of an automated algorithm that classifies the images from the neural response 
of the operator. 

2. Examine performance when RSVP is carried out in conjunction with a second task.  

3. Develop methods for classifying attentional impairments from neural data.  

4. Build and test an application (based on the SAIC real-time neural processing system) for 
displaying images and capturing an operator’s neural and behavioral responses at the 
ARL/HRED facility.  

This report begins with a discussion of the background for the technical approach. It then 
describes the tasks and deliverables and follows with a summary of the work. Finally, it covers 
each of the 10 studies and ends with a summary of the year’s results. 

2. Technical Approach 

This 6.2 research project will transition basic research previously carried out by the ICB 
teammates on the classification of human performance failures during difficult tasks based on 
measures of brain activity. Within the past decade, pattern classification algorithms, or neural 
decoding techniques, have been applied to spatial patterns of activity measured with functional 
magnetic resonance imaging (fMRI) to classify the types of objects presented to and the 
perceptual states of observers (Haynes and Rees, 2005; Kamitani and Tong, 2005). While these 
neural decoding techniques applied to fMRI data provide important clues about the neuronal 
representation of information, application of fMRI measurements within a real-time field context 
is currently not feasible. The basic research conducted by ICB co-investigators Giesbrecht and 
Eckstein applies these classification techniques to high temporal resolution patterns of neural 
activity acquired with electroencephalography (EEG). While there are several reports of stimulus 
classification based on EEG measurements in the literature (Philiastides and Sajda, 2006a; Luo 
and Sajda, 2009), Giesbrecht and Eckstein have performed successful stimulus classification 
under difficult dual-task situations that are potentially relevant to the battlefield context 
(Giesbrecht et al., 2009; Ristic et al., 2009). In this dual-task paradigm, two visual targets (each 
backward masked by a pattern) are presented in rapid succession (see figure 1a). The first task 
(T1) required the discrimination of the direction of a central arrow that was flanked by arrows 
pointing in the same direction (easy) or in a different direction (hard). The second task (T2) 
involved discriminating whether T2 was related or unrelated to a context word presented at the 
very beginning of the trial. Typically in this dual task paradigm, correct identification of the first 
(T1) leads to impaired identification of the second (T2); a phenomenon known as the ‘attentional 
blink’ (Attentional Blink [AB], figure 1b). 
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Figure 1.  Dual-task paradigm and behavioral results. Panel a: Sample stimulus sequence. Each trial began with the 
presentation of a context word (1000 ms), followed by the presentation of the first target stimulus (80 ms), 
a visual mask, and the second target word (67 ms), and a visual mask. The temporal lag between the two 
targets (T1-T2 Lag) was either 320 or 920 ms. The first target task was to indicate the direction of the 
central arrow that was flanked by arrows pointing in the same direction (easy/low task load) or different 
directions (hard/high task load). The second target task was to indicate whether the target word was 
related or unrelated to the context word. Panel b: Behavioral performance on the second target task 
averaged across the sample (12 participants). 

We applied a linear pattern classifier (i.e., linear discriminant analysis) to EEG data evoked by 
the T2 and evaluated performance of the classifier for separate post-T2 time points using a k-fold 
cross-validation scheme.  Target amplitude was the primary classification feature. This analysis 
revealed several key findings. First, when the classifier was trained and tested on activity evoked 
by the second target, accuracy was above chance when the two targets were separated by enough 
time to be outside the typical AB time window (figure 2). This was true regardless of the 
difficulty (load) of the first target task. Second, during the typical AB time window when 
behavioral performance on the second target task is most impaired, the classifier was accurate 
only when T1-task load was low. Because the AB represents a failure of attention, these results 
indicate that patterns of neural activity recorded during periods when attentional capacity is 
pushed to its limits can be used to discriminate the information presented to the observer 
independent of behavior. 
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Figure 2.  Performance of the classifier in 
discriminating whether the T2 word was 
related or unrelated to the context word. 
Classifier performance was quantified using 
a nonparametric measure of the area under 
the Receiver Operator Curve (Az). Separate 
classifiers were trained and tested on T2-evoked 
neural activity for each participant measured at 
central and parietal midline electrodes (Cz and Pz). 

Another unique aspect of the ICB basic research, and perhaps the most critical one for the 
present work, is that various metrics obtained from the temporal patterns of EEG activity can be 
used to predict the observers’ performance (Eckstein et al., 2008; Das et al., 2009; Giesbrecht et 
al., 2009). For instance, in the dual task paradigm described above, the classifier could accurately 
discriminate when the observers made an error during the AB based not only on activity evoked 
by the second target, but also by activity evoked by the first target (figure 3). In other words, the 
classifier could discriminate a performance failure on the second target before the second target 
was presented to the observer. Interestingly, the accuracy of classification errors was not 
constrained by task load. 
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Figure 3.  Classifier accuracy in discriminating attentional failures based on inputs derived 
from activity evoked during two periods after the second target, activity evoked 
the first target, and a Gaussian noise control. 

The results of this ICB research suggest that pattern classification algorithms may be used to 
assess the attentional state of the Soldier on a moment-by-moment basis, thereby permitting 
performance to be optimized. Using classification algorithms to detect variations in attentional 
performance is the key technical solution that will be transitioned in the current 6.2 project. The 
application of classification algorithms to EEG is an important step towards real-time monitoring 
of the environment and crew station operator’s perceptual and cognitive states and it is a natural 
point of collaboration between ICB faculty and current work being done by SAIC in more 
complex military contexts, and the ARL-led BCITs. 

2.1 SAIC Applied and Transitional Research 

In contrast to the basic research developed at ICB, SAIC’s applied research and neurotechnology 
is based on established scientific observations describing how the human visual system processes 
and classifies complex imagery. For over a decade it has been known that the visual cortex can 
perform complex categorization of visual stimuli within a few hundred milliseconds of the 
stimulus presentation (Thorpe et al., 1996). In the original laboratory experiment, subjects were 
asked to determine if a photograph, presented for only a few milliseconds, contained an animal. 
Using EEG, researchers were able detect an animal/no-animal categorization signal emanating 
from the frontal and parietal cortex far earlier (150 ms) than any behavioral response could be 
initiated. Since the initial finding, various groups have expanded this work by having subjects 
perform more complex categorizations (Tanaka and Curran, 2001; Tanaka et al., 2005; Scott et 
al., 2008). This idea has also been extended to incorporate sequentially presented stimuli, known 
as the RSVP paradigm, for both still and motion imagery (Luo and Sajda, 2009). 
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SAIC’s recent work has focused on transitioning this laboratory-based EEG research into a more 
applied context. Scientific studies that classify the perceptual state, based on EEG signals, 
require only statistical significance to demonstrate their validity. However, if this technology is 
to be utilized in an application, a much higher level of performance is required. Under the 
Defense Advanced Research Project Agency’s (DARPA)’s Neurotechnology for Intelligence 
Analysts (NIA) program, SAIC developed EEG classification technology whose performance far 
exceeded any previously published result. In this project, Imagery Analysts (IAs) were asked to 
identify targets of military significance in satellite imagery (Curran et al., 2009). Using EEG 
classification, the SAIC algorithm was able to determine when the IA had seen a target only  
120 ms after the image was presented. The classification accuracy exceeded 0.95 area under the 
Receiver Operating Characteristic (ROC) curve for many subjects.  

Laboratory studies that utilize EEG to measure and classify perceptual states often use repeated 
trials to improve the signal-to-noise ratio and subsequent results. The underlying neural 
signatures associated with a perceptual state can often be clearly shown by averaging over 
repeated trials. However, for many applications of this technology it is critical to minimize the 
number of required stimulus presentations and to rapidly process the EEG signals. Again, under 
a DARPA program (Cognitive Technology Threat Warning System–[CT2WS]), SAIC developed 
a real-time system that processes the perceptual state of the subject on a trial by trial basis. Here 
subjects were asked to detect potential threats (vehicles, people, etc.) over a wide field-of-view. 
Regions with potential threats (determined by an automated detection algorithm) were presented 
to the subject as a sequence of short video clips (figure 4). Using only the subject’s EEG signals, 
the real-time system identified which regions contained a potential threat. Each video clip was 
500 ms long and was embedded in a sequence containing hundreds of such clips. Thus, subjects 
were able to screen thousands of clips in a matter of minutes, with EEG classification 
performance remaining high (figure 4). This real-time system was tested with live video from a 
high resolution imager in an operational environment at Yuma Proving Grounds in February, 
2009. 

The CT2WS real-time system, shown in figure 5, demonstrated the feasibility of implementing 
EEG classification technology in operational environments. First, it overcame some of the 
technical challenges inherent in acquiring and processing EEG. Using automated artifact 
detection algorithms, the real-time system could dynamically redisplay stimuli that were 
presented during periods of degraded neural signal which occur with subject movement or eye 
blinks. Second, it achieved a high level of performance in a stressful operational environment 
with live targets (i.e., live video feed) and distracting (i.e., crowded and noisy) surroundings. 

The field test revealed a critical need to integrate the detection of more subtle attentional states 
into these systems. During the field test, subjects were required to switch between passively 
viewing the RSVP sequence on one screen and actively identifying targets, via a button press, on 
another screen. Often, during demanding portions of the test, classification performance would 
degrade. We hypothesized that the decreased performance was due to the attentional demands of 
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task switching (Rogers and Monsell, 1995; Slagter et al., 2006). Our system, however, only 
classified the perceptual state of the subject without accounting for attentional focus or 
attentional load. Any future application of this system in a complex task environment, such as an 
MGV crew station, would be greatly enhanced by attentional measures. By incorporating the 
ICB research, a system for processing large amounts of imagery can be integrated into the type 
of multi-tasking environment found in MGVs. 

 

Figure 4.  CT2WS paradigm and results. Panel a: Stimuli consisted of an RSVP sequence containing short (500 ms) 
video clips of potential targets and background clutter. Panel b: Video clips ranked by the neural response 
with colored border indicating ground-truth (red = target, blue = clutter); only the 10 highest and lowest 
scoring clips are shown. Panel c: Classifier performance for one subject quantified in an ROC curve (area 
under curve = 0.95). Note: imagery from the CT2WS program has not yet been approved for public 
release; images above are representative of stimuli used in the program. 
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Figure 5.  The SAIC real-rime EEG Processing and Classification System in use in the laboratory (left) and in the 
field (right) 

2.2 Approach to Research and Transition 

Over a 3-year period, the current project will transition the ICB and SAIC work from basic 
science and proof of concept (6.1) into applied research (6.2) that will be applicable not only in 
the context of future force MGV concepts, but within any operational context that requires the 
Soldier to deal with multiple complex tasks and a number of display and sensor inputs. The 
effort will integrate the ICB finding that classification techniques can be used to assess 
attentional state with RSVP presentation and real-time EEG classification techniques previously 
developed by SAIC. 

The key technical solution motivating the current project is the application of pattern 
classification algorithms to neural and physiological data to determine an observer’s likelihood 
of making an attentional performance failure. The ICB basic research serves as the foundation 
which will be incorporated in SAIC’s real-time, adaptive, automated neural processing system, 
and finally instantiated on Tank Automotive Research Development and Engineering Command 
(TARDEC) compatible platforms. The feasibility of this solution will be shown by addressing 
three fundamental scientific issues. 

1. Optimizing behavioral performance in the multi-task setting. The demonstration of dual 
and multi-task performance impairments are ubiquitous in the scientific literature 
(Raymond et al., 1992; Pashler, 1994; Giesbrecht and Di Lollo, 1998; Giesbrecht et al., 
2007). The key question here is whether there are methods of presenting critical 
information for multiple tasks that will minimize these impairments so as to optimize 
Soldier-system performance.  

2. Optimizing the classification of target threats based on neural data acquired in a multi-task 
setting. In the case that operator performance cannot be optimized, the question is whether 
there are methods of presenting critical information for multiple tasks to ensure high neural 
decoding performance even though operator performance may fail. There is clear evidence 
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based on the work done at ICB, SAIC, and other laboratories that specific fluctuations in 
voltage measured by EEG, both those that are tied to sensory processing and those that are 
associated with later decisions and conscious perception, can be used to classify the 
stimulus presented to an observer (Philiastides and Sajda, 2006a, 2006b; Eckstein et al., 
2008; Das et al., 2009; Giesbrecht et al., 2009). However, it is unclear how these signals 
(and consequently the efficacy of these neural decoding techniques) are affected by 
sensory, cognitive, and task conditions. 

3. Optimizing the classification of attentional impairments based on neural data. Based on 
recent work done at ICB, there is the indication that neural decoding techniques may be 
effective in using attentional indices in predicting performance failures. It is an unresolved 
question as to what task and stimulus constraints along with what properties of the EEG 
signal (amplitude, phase, power, etc.) are most predictive of performance failures and how 
the detection of these failures is affected by task demands. Determining these constraints is 
critical for assessment of the feasibility of the technical solution. 

3. Year One Tasks and Deliverables 

During the first year of the project, the team performed the following tasks and met Milestones 
1.1 through 1.3. Milestone 1.4 will be met with the delivery of this report.  

3.1 Tasks 

1.1 (ICB/SAIC) Conduct experiments to establish the basic parameter set for the RSVP task 
that optimizes performance in terms of metrics such as probability of detection and false 
alarm rate or the area under the ROC curve. Analyze the neurophysiological data collected 
during the experiments for features which allow categorization of attentional state.  

1.2 (SAIC) Incorporate results from previous ICB 6.1 work into the SAIC real-time EEG 
processing application to include attentional measures. 

1.3 (ARL) Integrate the basic SAIC real-time EEG processing application with the task 
generation hardware and software. Use the SAIC application as a guide for implementation 
with ARL EEG hardware.  

1.4 (ICB) Define and implement a primary task to be carried out with the secondary 
scanning/RSVP task so that subject performance can be measured and task complexity can 
be manipulated.  

1.5 (ARL) Incorporate the results of ICB/SAIC research (Task 1.1) in EEG processing module 
of the task generation hardware and software in order to optimize performance metrics 
such as probability of detection, state classification, and neural pattern categorization. 
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1.6 (ICB) Conduct experiments to develop parameters and guidelines for dual task 
applications. 

1.7 (SAIC) Incorporate the results of Task 1.1 in the SAIC real-time application. 

1.8 (SAIC) Integrate the SAIC real-time application with the primary task. Establish guidelines 
for the dual task implementation. 

1.9 (SAIC/ARL) Define a set of performance metrics that can be used throughout the project to 
assess improvements to the application. These metrics should be relevant to the application 
of RSVP in a dual task paradigm and support meaningful comparisons with standard 
methods of performing these tasks. SAIC will conduct tests on the real-time EEG dual task 
application and collect baseline performance metrics.  

3.2 Technical Deliverables (Quarterly Milestones) 

1.1  (SAIC) Algorithms, software, and documentation, which specify hardware requirements, 
constraints, and design guidelines for the incorporation of the basic SAIC real-time EEG 
processing in transitional hardware at ARL.  

1.2 (ICB) Report documenting the experimental results with performance tradeoffs and 
guidelines for the RSVP task parameters shown in table 1.  

1.3 (SAIC) Algorithms, software, and documentation that incorporate the results of Task 1.1.  

1.4  (ICB/SAIC/ARL) Year 1 final report documenting: 

1.4.1 Experimental results, parameters, and guidelines for the basic RSVP task 
implementation in a real-time system and for implementation in dual task 
applications, including algorithms and software. 

1.4.2 Performance metrics and test results for the SAIC real-time system. 

1.4.3 Hardware and software guidelines for the integration of EEG processing with Army 
systems. 
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4. Year 1 Overview 

The Year 1 work had four objectives: 

1. Establish the basic parameters that optimize performance of a system using RSVP to 
display images for an operator. Consider both behavioral performance (the ability of the 
operator to detect and report target threats) and the performance of an automated algorithm 
that classifies the images from the neural response of the operator. 

2. Examine performance when RSVP is carried out in conjunction with a second task.  

3. Develop methods for classifying attentional impairments from neural data.  

4. Build and test an application (based on the SAIC real-time neural processing system) for 
displaying images and capturing an operator’s neural and behavioral responses at the 
ARL/HRED facility.  

In order to meet these objectives, the team worked to build a collaborative environment in which 
each member contributed to the whole. In support of this goal, the group held quarterly meetings 
to discuss progress and exchange ideas. A share site was established to facilitate the exchange of 
data, imagery, and documents. From the beginning of the project, biweekly teleconferences were 
held to discuss the work of each group during the two week period. In the first quarter of the 
project, the team emphasized the convergence of the various experimental paradigms and 
methods of the three groups so that each group’s results could be related within a common 
context. Because of this collaborative approach, the Year 1 (FY10) milestones were met, with 
each group performing different but complementary tasks.   

The first year results are summarized by objective. 

4.1 Objective 1: Optimize Performance with RSVP 

Work on this objective focused on the parameters set out in table 1.  

Under Task 1.1 of the SOW, the ICB and SAIC systematically examined the RSVP parameters 
from the proposal. The ICB conducted a series of studies that addressed RSVP rate and location 
in the visual field and target salience. These studies show that performance on a target 
recognition task degrades when the RSVP imagery is shifted away from a fixation point (the 
center of the visual field) and that the magnitude of the performance degradation increases at 
higher presentation rates.  

SAIC has a large collection of EEG and behavioral data that was acquired in the laboratory and 
in field tests during the DARPA CT2WS project. Using this data, SAIC focused on analyses of 
parameters that affect classification performance in the real-time system, guided by results from 
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Barry Giesbrecht’s previous (6.1) research. One critical parameter was identified in this analysis: 
target probability. This was particularly interesting because it explained in part why the SAIC 
real-time system behaved differently in the field than in the lab, something that hadn’t been 
previously understood. This is an important finding for the overall project. In real world systems, 
targets often appear in groups which means a system must gracefully handle long periods when 
no targets are present interspersed with periods of very high target abundance. 

Table 1.  Experimental variables examined in Year 1 together with a summary of the results to date. 

Variable Example 
Conditions 

Purpose Results 

RSVP location 1. Foveal 
2. Peripheral 

If performance is not impaired by 
a peripheral stream, then that 
might permit the operator to 
continue with primary risk. 

Initial results show rapid fall off in 
performance as presentation shifts 
away from fixation. 

Presentation 
Rate 

1. Slow (3 Hz) 
2. Fast (10 Hz) 

If performance is unimpaired at 
high rates, this could potentially 
increase throughput. 

Q1 study examined 8.5−12.5 Hz 
and found performance degrades at 
faster speeds. 

Target 
Frequency 

1. Low frequency 
(1:100) 
2. High frequency 
(1:10) 

Target frequency may alter 
observer performance, but 
perhaps not classifier 
performance. 

This was identified as a key 
parameter.  Performance degrades 
with very high target frequency. 

Target Salience 1. Low 
2. High 

This will determine visibility 
constraints on observer and 
classifier performance. 

Performance is limited by the 
observer’s ability to see the target. 

Target Size 1. Small (1° of 
visual angle) 
2. Large 5° of 
visual angle. 

This will determine minimum 
size constraints for peripheral 
presentation. 

Performance is limited by the 
observer’s ability to see the target. 

 

Based on these observations from the CT2WS data, the ICB team designed and carried out a 
study to systematically examine the effects of target probability. The ICB team showed that the 
optimal range of target frequency is from 10−25%. When targets appear more frequently, both 
behavioral performance (the ability of the subjects to press a key when they see a target) and the 
performance of the neural signal classifier degrade. This confirmed SAIC’s CT2WS analysis. 
Further evaluation by SAIC showed that the effect could be mitigated, to some degree, in a real-
time system by an adaptive thresholding technique.  

4.2 Objective 2: Understanding Dual-Task Performance with RSVP 

One of the key undertakings for this year was to define and implement a dual-task paradigm that 
mimics the multi-tasking environment which is common in operational settings. In the original 
proposal, a specific primary task to control autonomous mobility was defined to be used with 
RSVP as a secondary task. The decision was made instead to define an auditory task that mimics 
an operator monitoring communications while simultaneously viewing images with RSVP. 
There were several compelling reasons for this change. Initial results by the ICB showed 
significant degradation in performance when the RSVP stream is presented away from fixation 
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(even para-foveally). This means that if the primary task is also visual, the operator cannot easily 
perform both tasks simultaneously. In order to handle both tasks, the primary task must be 
interrupted periodically to present the RSVP sequence. In this type of implementation, the tasks 
are executed serially, without making significant, simultaneous demands on the cognitive 
resources of the operator. Since the goal of the Year 1 work was to examine the impact of RSVP 
on a task with shared cognitive resources, the team decided to implement a non-visual primary 
task.  

The ICB conducted the initial cross-modal, dual-task study in the first quarter. For the particular 
auditory and visual tasks they used, they found that overall performance was impaired, 
particularly when the temporal interval between the two tasks was brief. During the second 
quarter, the ICB and SAIC teams worked together to define and implement a new set of auditory 
and visual tasks based on the SAIC real-time system. Both teams began running subjects in dual-
task experiments. The ICB team found that there was no degradation in either behavioral or 
classifier performance when subjects were looking for visual targets either as a single task or 
while simultaneously listening for a target word. SAIC had similar results with a slightly more 
difficult cross-modal paradigm. SAIC also found that there is interference between the auditory 
and visual tasks in the form of delayed response times for the visual task when auditory stimuli 
are also present. 

New results uncovered in this research are that RSVP can be used in conjunction with common 
auditory tasks, such as monitoring communications. The results also point to the possibility of 
building a second classifier for auditory target recognition that can be operating in parallel with 
the RSVP classifier in a real-time system.  

4.3 Objective 3: Classifying Attentional Impairments 

By the third quarter of the project, all three teams had tested a number of subjects and collected 
neural and behavioral data using an RSVP paradigm. To address the third objective, the teams 
analyzed their experimental data looking for features in the EEG signals that could predict 
performance errors, that is, either incorrect responses from subjects or errors in classifying 
subjects’ neural signals. Finding reliable, predictive features could have a major impact by 
enabling new types of robust, adaptive Soldier-system interfaces. The ICB team looked at all 
trials when the subjects were presented with a target. They compared the instances when the 
subjects responded correctly (“hits”) with those when they didn’t (“misses”). They found that 
they could correctly classify these two categories at a level above chance based upon features of 
the post-stimulus EEG signal. The SAIC team looked at the temporal dynamics of the score from 
SAIC’s real-time EEG classifier and found a feature that indicates when the system is 
performing well and classifying accurately. The ARL team looked at the relationship between a 
subject’s behavioral reaction time in an RSVP visual target detection task and their EEG signals. 
They found a significant difference in the evoked neural response from the trials with the slowest 
reaction times and those with the fastest.  
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4.4 Objective 4: Integration of an RSVP Application at ARL 

ARL and SAIC worked together during the first quarter of this year to duplicate key components 
of the SAIC real-time system at ARL. SAIC delivered a database of video clips from the 
DARPA CT2WS program and supported the ARL scientists in duplicating the CT2WS RSVP 
experiments with that data. The ARL team then conducted several studies with this 
implementation. Study results are summarized under Objective 3.  

As the project transitions from prototype to integration with the crew station simulator, it is 
important to use a common set of performance metrics to measure improvements and highlight 
problems. The metrics quantify the performance of a system that incorporates RSVP and the 
classification of neural signals to identify targets of interest in imagery. These metrics will be 
used in the next two years to measure the improvement in performance as research results are 
incorporated in the prototype system. The metrics will also be utilized to answer the fundamental 
question of this research for different systems: does the integration of neural-based processing in 
a given system significantly improve its overall performance? The metrics defined address this 
question in terms of accuracy, sensitivity, and throughput.  

Table 2 summarizes the effort in Year 1 for each of the four objectives. It cross references these 
objectives to the tasks and milestones. 

Table 2.  Cross-reference objectives to tasks and milestones and Year 1 status. 

Objective Tasks Milestones Performers 

1:  RSVP Parameters 1.1, 1.7 2, 4 ICB, SAIC, ARL 
2: Dual-task 1.4, 1.6, 1.8 4 ICB, SAIC 
3: Attentional State 1.1, 1.2 3, 4 ICB, SAIC, ARL 
4: Transition to ARL 1.3, 1.5, 1.9 1, 4 ARL, SAIC 

 

5. Parameters to Optimize Performance with RSVP 

To address the first objective, the team conducted four separate studies that examined aspects of 
Rapid Serial Visual Presentation of images. The studies were directed toward how best to present 
imagery so that a neural signal classifier could accurately detect the viewer’s response.   

5.1 Study 1: RSVP Location and Presentation Rate (ICB) 

For this study (figure 6a), participants viewed short (approximately 20 items) RSVP streams of 
letters. In half the streams an X or a 3 was present or absent and at the end of each stream, 
participants had to indicate whether the target (i.e., an X or a 3) was present or absent. The key 
manipulation in this task was RSVP rate (8.5 Hz, 10 Hz, and 12.5 Hz) and RSVP distance from 
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the fixation point (0.36°, 0.46°, and 0.73°). The mean percentage of correct responses in this task 
(i.e., hits and correct rejections) is shown in figure 6b.  

5.1.1 Results 

The key finding in this study is that there was an interaction between RSVP location and 
presentation rate, such that when the RSVP stream is presented close to fixation there is no effect 
of presentation rate, however, a slight shift away from fixation results in a large effect 
(approximately 15%) on presentation rate. Given that the stimuli in these sequences are highly 
over learned (i.e., letters), this suggests that moving the RSVP stimuli to the periphery in the 
context of the SAIC RSVP task may not be effective. 

 

Figure 6.  Panel a: Sample stimulus sequence. Panel b: Mean percent correct responses as a function 
of RSVP rate and location. 

5.2 Study 2:  RSVP Location and Target Salience (ICB) 

The goal of this task was to investigate the role of target salience in two different viewing 
conditions (figure 7a). In one condition, RSVP sequences of cars were presented in the center of 
the screen (central task). In the second condition, an RSVP stream of letters was presented in the 
center of the screen and during that stream a face or a car was presented in the periphery, just 
above or just below fixation. In each condition, subjects had to indicate whether a face was 
present or absent. The key manipulation in this study was that target salience was manipulated by 
titrating the level of noise in the image using a modified staircase procedure. The key measure 
was the standard deviation of the noise distribution that was required to maintain performance 
between 75−85%.  
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5.2.1 Results 

The results of this study are plotted as a function of experimental trial in figure 7b and averaged 
across the experiment in figure 7c. There are three key results. First, overall noise level is lower 
when the targets were presented in the periphery. Second, maximum noise level peaked at about 
the same time and at about the same level in both conditions. Third, the drop in noise level was 
more precipitous in the peripheral condition. Together these results suggest that similar levels of 
performance may be obtained in central and peripheral tasks, performance in the peripheral task 
is less robust to targets that are not salient. 

 

Figure 7.  Panel a: Sample stimulus sequences in the central and peripheral tasks. Panel b: Mean standard 
deviation of the noise distribution required to maintain performance between 75%−85% plotted as a 
function of trial. Panel c: Same as Panel b, except averaged across the entire experiment. 

5.3 Study 3A: Target Frequency (ICB) 

The goal of this study was to bridge the gap between the SAIC RSVP task and the tasks we have 
been using in the ICB 6.1 work. Here we are using the face-car stimuli (Das et al., 2010) with the 
same timing parameters as those used in the SAIC task. The participant’s task was to monitor the 
sequence for faces and to press the space bar when one is detected. A face occurred only 10% of 
the time. EEG data from 32 electrodes were collected while subjects performed this task. 
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5.3.1 Results 

 Single-trial voltages from the EEG data were submitted to a linear discriminant analysis, similar 
to what we have used in the past (i.e., Das et al., 2010) and the preliminary results for five 
observers using one electrode (PO4) are shown in figure 8. There are three key findings. First, 
classifier accuracy peaks at about 300 ms after the presentation of the stimulus. This can be seen 
in both the single subject data (Panel A) and in the subject mean (Panel B). Second, there are 
clear individual differences in classifier performance. Third, the peak classifier performance in 
this task, in which the probability of a face is 0.1, is approximately 150 ms later than in our 
recently-published study in which the probability of a face was 0.5 (Panel C, Das et al., 2010). 
When this difference is considered in light of the SAIC work on target probability (see Study 4), 
it suggests that target probability is likely a critical factor in determining the spatiotemporal 
dynamics of classifier performance. 

 

Figure 8.  Panel a: Classifier percent correct for each observer using EEG amplitude at electrode PO4 plotted as a 
function of stimulus onset. Panel b: Classifier performance averaged over subjects. Panel c: Classifier 
performance from Das et al., (2010) in which the probability of a face as 0.5. 

5.4 Study 3B: Target Frequency (ICB) 

Based on the results of Study 3A, this study tested the hypothesis that target probability is likely 
a critical factor in determining the spatiotemporal dynamics of classifier performance by 
conducting a multi-session experiment in the RSVP task (2 Hz) in which the target was a face 
and the nontargets were cars (both were embedded in noise). Each observer participated in four 
sessions. In each session, only the target probability was manipulated: with values of 0.05, 0.10, 
0.25, or 0.50 randomly assigned to each session. A total of eight subjects completed four 
separate sessions (32 total sessions), where each session differed in terms of the probability that a 
target was presented.  
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5.4.1 Results 

The behavioral performance (d’) for all participants is shown in figure 9 as a function of target 
probability. Clearly, sensitivity to the target declines as a function of increasing target 
probability. 

 

Figure 9.  Behavioral performance (d’) plotted as a function 
of target probability averaged across all observers (n=8). 

Shown in figure 10 are the results of a new pattern classification approach, which identifies the 
optimal spatial features that carry the most discriminative information for the particular 
classification problem in question. The resulting mean spatial filters are plotted as a function of 
target probability in figure 10. Visual inspection of the spatial filters indicates that as target 
probability decreases there appears to be an increase in the distribution of discriminative 
information across the parietal and occipital electrodes. Under high probability conditions the 
most discriminative information appears to be largely isolated at lateral occipital electrodes. 

 

Figure 10.  The mean spatial filters depicting the source of discriminative 
information between targets and nontargets as a function of 
target probability. 

To demonstrate that the pattern observed in the average spatial filters is not driven by a small 
number of subjects, the spatial filters for each subject are plotted for each condition in figure 11. 
All but one subject (S8) shows the same trend for a more diffuse distribution under low target 
probability and more focused lateral occipital distribution at high target probabilities. The results 
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of both the group mean and single subject data clearly indicate that the optimal electrodes for 
target classification changes as a function of target probability. Thus, if the target probability is 
known for a specific task context, then the classification algorithm could be optimized to 
emphasize the appropriate electrodes for that condition. 

 

Figure 11.  The spatial filters for each individual subject depicting the source of discriminative information between 
targets and nontargets as a function of target probability (top – bottom rows = 0.05, 0.10, 0.25, and 0.5, 
respectively). 

After the spatial filters were constructed, target classification was performed. We have adopted a 
variant of the linear discriminant analysis (LDA) approach to classification that is based on 
Bayes Theorem. The results shown in figure 12 are focused on the classification of the stimulus 
using the first 500 ms of stimulus-evoked EEG activity. Each figure shows the ROC curves for 
each subject (colored lines) and group average (black line) and associated Area Under the Curve 
(AUC) in each target probability condition. There are two interesting results from the ROC 
analysis. First, the overall (AUC) is best when the target probability is 0.10 or 0.25. Second, 
there appears to be a large amount of variability across individuals. The source of these 
individual differences is interesting both from a basic science and applied science perspective 
and it is something that we are currently investigating further with subsequent analyses. 



 

20 

 

Figure 12.  Pattern classification ROC curves plotted as a function target probability. Colored lines represent each 
subject, the black line the group mean. Panels a−d show the results for each target probability condition 
0.05, 0.10, 0.25, and 0.50 (C1−4, respectively). TPR=True Positive Rate, FPR=False Positive Rate. 

Because target probabilities vary across task contexts, it is important to know how robust a 
classification model is with respect to changes in target probability. To investigate this issue, we 
ran several analyses where the pattern classification algorithm was trained on one target 
probability condition and tested on the remaining three conditions. The ROC curves for each of 
these analyses are shown in figure 13. There are two interesting results. First, there is an overall 
reduction in classification AUC for all training conditions. Second, the best performance was 
obtained when the classification algorithm was trained on the 0.5 probability condition. This 
contrasts the previous analysis which trained and tested on the same condition and suggests that 
when a target probability is unknown that using the higher probability condition may be the best 
option. 

 

Figure 13.  Similar to figure 12, except when training on one condition and testing on the remaining conditions. 

5.5 Study 4: Target Frequency (SAIC) 

For this study, SAIC leveraged an extensive dataset collected during the CT2WS project, both in 
the laboratory and in field tests, to focus on parameters that affect classification performance in 
the SAIC real-time system. This was of particular interest since we observed a decrease in 
performance for the same subjects in the field test as compared with the laboratory. The results 
of neural signal classification were significantly less accurate in the field. One factor that quickly 
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emerged was the difference in target probability.  In the lab, target probability was pre-selected 
and fixed. In the field sessions, target probability varied greatly.  

Figure 14 illustrates the difference in target probability between a lab and field experiment. The 
first two rows show the classifier scores and average target event related potential (ERP) for a 
laboratory experiment. The second two rows show the same data from the field experiment. 
There was a clear difference in target probability (i.e., the ratio of red diamonds to black circles 
per unit of time) between these experimental sessions. While the lab session had a constant target 
probability the field session varied form very low to very high target probability. The resulting 
effect on the ERP is clear, showing a significant degradation in field ERP. 

 

Figure 14.  Automated neural processing system comparison. Top rows represent one 
experimental session, bottom rows represent one field session. Scatter plots 
show the classifier score for each stimuli as a function of time 
(NTG = non-target, TRG = target). Bad events are when the EEG could not 
be classified due to artifact or noise. The topographic plots are average target 
minus non-target ERP over the entire session. 

5.5.1 Results 

If we focus on the Field scatter plot in figure 14, it is clear that when the target probability was 
high, during the second half of the test, the target scores were low (below the threshold of 0) and 
thus, many targets were misclassified by the system as nontargets.  In general, as target 
probability increased the average classifier score decreased, for both targets and non-targets 
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(figure 15). This resulted in a decrement in overall classifier performance for those sessions. 
However, with knowledge of target probability, the classifier score can be adjusted to offset the 
decrease. Figure 16 illustrates how correcting for target probably increases performance. Of 
course, an operational system will not have access to true target probability; however, target 
probability can be predicted directly from the score distribution. Specifically, target probability is 
inversely related to the kurtosis of the scores. A system that continuously monitors recent 
classifier scores would likely be able to estimate target probability. 

 

Figure 15.  Classifier Score and Target Probability. Average score, 
calculated over 2-min epochs, plotted as a function 
of target probability within that epoch. TRG 
scores in red, mean NTG scores in black. R 
values indicate correlation coefficient. 

 

Figure 16.  Classifier performance (area under the ROC curve) from the CT2WS field test.  Panel a shows the 
original results while Panel b shows the results if the classifier scores are adjusted based upon target 
probability. 
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6. Understanding Dual Task Performance 

To meet the second objective, to examine performance when RSVP is carried out in conjunction 
with a second task, the team developed a dual task experiment that included visual target 
detection with RSVP and a simultaneously occurring auditory task. SAIC and the ICB each used 
their respective RSVP tasks and added a primary task of listening for a call sign. For the ICB, the 
visual targets were faces or cars. SAIC used the video imagery from CT2WS. The motivation for 
this specific dual-task paradigm was twofold. First, both the visual and auditory task are akin to 
something a Soldier would be doing while interacting with a crew-station system. Second, 
evidence suggests that performance degradation from cross modality multitasking is much less 
than multitasking in the same modality (Alais et al., 2006). Most all studies of RSVP have been 
structured so that the RSVP is the central and only task. Two studies were carried out to examine 
RSVP with an auditory task. 

6.1 Study 5: Guidelines for Dual Tasks (ICB) 

In this study, the visual RSVP task consisted of the target (a face) presented with 0.10 probability 
in a 2-Hz RSVP of cars. Additionally, auditory two-syllable words selected from the military 
alphabet, presented using text to speech functions, are played through speakers simultaneously 
with every sixth image. When performing the word detection task, a target word was randomly 
selected at the beginning of that session that occurred with a 0.10 probability. Participants 
performed three different conditions: face detection only, word detection only, or simultaneous 
dual detection. Order was randomized, but restricted so that the word detection only condition 
followed either face detection only or dual task, thus ensuring that participants were practiced in 
face detection before performing the word task in isolation. This task was designed to mimic a 
task Soldiers may do when monitoring auditory communications for their call sign. 

6.1.1 Results 

Seventeen participants completed this study. Overall behavioral performance is shown in figure 
17. The only significant effect on performance was the difference between the auditory and 
visual tasks. There was no significant dual-task impairment. 
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Figure 17.  Behavioral performance (percent hits and percent false alarms) 
plotted as a function of the number of tasks and task type. 

The results of the pattern classification analysis using linear discriminant analysis are shown in 
figure 18. It is important to note that this analysis is focused on using neural activity to predict 
whether a face was present in the visual stream in the conditions in which the observers were 
performing on the auditory task alone (auditory single), both tasks (visual dual), or the visual 
task alone (visual single). There are two key results that emerged from this analysis. First, the 
performance of the classifier was unaffected whether performing the visual task alone or while 
performing both the auditory and visual task. Second, performance of the classifier is severely 
impaired when subjects are instructed to perform the auditory task only. These results suggest 
that the real time classifier may only be successful under multi-task conditions when observers 
are told to actively attend to the visual task. 

 

Figure 18.  Pattern classifier performance decoding the visual stimulus 
plotted as a function of time and task condition. 
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In addition to the pattern classification analysis described above, we have also performed a series 
of correlations between behavioral performance and classifier performance. This analysis 
revealed significant positive correlations between classifier performance and behavioral 
performance in both the single and dual task conditions (figure 19: Panels A and B). Moreover, a 
correlation between the classification performance in the single task condition and classification 
performance in the dual task condition was also significant (figure 19: Panel C). These results 
suggest that the classifier can be used as a proxy for human performance in different task 
conditions and that the classifier in one task context can serve as a performance proxy for 
classifier performance in a different task context. 

 

Figure 19.  Correlations between behavioral performance and classifier performance in the 
single (Panel a) and dual (Panel b) task conditions and between single and  
dual task classifier performance (Panel c). 

In addition to this analysis, a second type of classifier was applied and the results analyzed. The 
second classifier was the LDA classifier described in the previous study. This first set of analyses 
focused on classification of the visual stimulus under single and dual task conditions and 
classification of the auditory stimulus under single and dual task condition. The results of this 
analysis are plotted in figure 20 and in table 3. Interestingly, the AUC when classifying the 
visual stimulus is unaffected by the dual task manipulation, but the AUC classifying the auditory 
stimulus is impaired under dual task conditions relative to single task conditions. 
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Figure 20.  Pattern classifier ROC curves when decoding the visual and auditory stimuli. Gray lines are for 
individual subjects. The black line indicates the group mean. 

Table 3.  Classifier AUC as a function stimulus (Vis./Aud.) 
and number of tasks (Single/Dual). 

 Vis. Single Vis. Dual Aud. Single Aud. Dual 

Mean 0.758 0.759 0.809 0.751 

SD 0.093 0.086 0.073 0.069 

Max 0.889 0.896 0.906 0.915 

Min 0.585 0.624 0.666 0.676 
 

A follow-up analysis was performed training the classifier on one task (e.g., single) and then 
testing it on another task (e.g., dual) within each stimulus modality. In all cases, classification 
was well above chance, but significantly degraded when testing on data that contained a different 
number of tasks.  

We also conducted analyses that revealed significant positive correlations between individual 
differences in classification accuracy under single task conditions with individual differences in 
classification accuracy under dual task conditions. The key result was that within each modality 
there were significant correlations between single and dual task classifier performance. The 
visual task correlation was the best at r(15)=0.89. The auditory task correlation coefficient was 
much less robust, but still significant at r(15)=0.55. Together these analyses suggest that 
although there is degradation in classifier performance when training on one task and testing on 
the other, one could still potentially predict the performance in one condition using performance 
in the other condition, particularly for the visual task. 

6.2 Study 6: Guidelines for Dual Tasks (SAIC) 

SAIC’s dual task was an extension of the RSVP paradigm used in the CT2WS program. 
Specifically, 500-ms video sequences were presented in a serial and uninterrupted fashion for a 
number of 2-min blocks. Subjects maintained fixation on the video stream and pressed a button if 
they saw a target (e.g., person or vehicle). In addition to this visual task, subjects were 
simultaneously listening to a communication channel of spoken words (military alphabet). They 
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were instructed to push a second button if they heard specific target words or call signs (e.g., 
“november,” “zulu”). 

6.2.1 Results 

Behavioral results from our dual task experiment indicate that the majority of subjects can 
perform both tasks with reasonable accuracy. However, even in this relatively simple 
multitasking scenario, the addition of the auditory detection task significantly affects the reaction 
time in the visual (RSVP) task. Figure 21a shows the relationship between stimulus onset 
asynchrony (SOA), the time difference between the visual and auditory presentation, and the 
reaction time (RT). Here, the reaction time is delayed as the SOA approaches the average 
response time (about 500 ms) for visual target detection. This effect is also reflected in the 
overall reaction time distributions (figure 21b); where the average reaction time for trials with 
both visual and auditory stimuli (yellow) is faster for trials with visual stimuli alone (blue). This 
type of behavioral interference is common, even in the simplest types of multitasking (Pashler, 
1994). 

 

Figure 21.  Behavioral and Classifier Performance for Dual Task Experiment (all subjects). The task was to 
simultaneously detect targets in video imagery and specific words in an audio communication stream. 
Panel a: The relationship between SOA and RT. Panel b: RT distributions for trials with interference 
(visual and auditory together, yellow) and without interference (visual alone, blue). Panel c: 
Behavioral accuracy (ACC) and classifier area-under-the-curve (AUC) with and without interference. 
Note that interference affected RT but not ACC. 
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In addition to behavioral interference, we found evidence for interference in the classification of 
the evoked response (figure 21c). For the majority of subjects, the classifier performed equally 
well for trials with and without auditory interference. However, several subjects showed a 
significant degradation in classifier performance for trials where visual and auditory stimuli were 
presented together. Interestingly, these subjects tended to have relatively lower area under the 
ROC curve (AUC) values, even without auditory interference, indicating poorer classifier 
performance. This type of interference could be a consequence of overlap in the evoked response 
from visual and auditory stimuli. To illustrate this, figure 22 shows that the scalp topology of the 
auditory (for target words) and the visual (for target videos) ERP. For this subject, there is a 
noticeable overlap in the response between 600 and 800 ms. 

 

Figure 22.  ERPs for Visual and Auditory Targets (one subject). Top row: ERP for video sequences containing 
targets. Bottom row: ERP for target words. 

To compare the overall performance of the visual classifier with the behavioral response we did 
the following analysis. First we calculated the probability of detection (Pd) for the visual targets 
based on the behavioral response (figure 23a). We then found the score threshold that resulted in 
the same Pd from the classifier (numerical threshold values shown in figure 23a inset). Using this 
threshold we calculated the corresponding false alarm rate (figure 23b). For many subjects the 
false alarm rate from the classifier was nearly as good as or even better than the behavioral false 
alarm rate. In addition we calculated the throughput (clips per minute) for each subject (figure 
23c). Here the behavioral rate is the true upper bound, denoting the average rate that the subject 
proceeded through the experiment. The classifier throughput reflects the percentage of these 
trials that were classified (i.e., free of artifacts). Several subjects in this study had very few 
artifact trials and therefore maximal throughput. Overall, this result indicates that the current 
state of artifact detection and mitigation is good, but needs improvement. A post hoc analysis 
(data not shown) indicated that many of these trials could have been successfully scored despite 
the presence of artifacts. 
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Figure 23.  Classifier Performance Summary (all subjects). Panel a: Probability of detection for the classifier is 
matched to behavior. Panel b: False alarm rates for the matched Pd. Panel c: System throughput (clips 
per minute), reflecting the percentage of trials classified (i.e., free of artifacts).   

The preceding analyses have compared the classifier results with the behavioral response, 
indicating that, at best, the classifier matches behavioral performance. This result may seem to 
indicate that EEG classification is no better than a behavioral response. However, the purpose of 
this experiment was not to “outperform” the subject. Rather, the purpose of this experiment was 
to see if a neural classification system can continue to perform in a multitasking environment. 
Moreover, the experiment was not explicitly designed to be difficult. The rate of the video clip 
presentation was slow enough (2 Hz) for the subject to respond. Together, the above results lay 
the groundwork for a system that could enhance overall performance, either by increasing RSVP 
presentation rate or allowing the subject to focus on responding to the auditory (or other) task 
alone. 

7. The Neural Correlates of Attentional Impairment 

To address this objective, the three teams analyzed their experimental data looking for features in 
the EEG signals that could predict performance errors, that is, either incorrect responses from 
subjects or errors in classifying subjects’ neural signals. Finding reliable, predictive features 
could have a major impact by enabling new types of robust, adaptive Soldier-system interfaces. 

7.1 Study 7: Predicting Hits and Misses (ICB) 

In Study 3B, a total of eight subjects completed four separate session where each session differed 
in terms of the probability that a target was presented. In this case, the target was a face and the 
nontargets were cars (both were embedded in noise). The goal of Study 7 was to analyze the data 
to see if a classifier could differentiate the trials in which the subjects correctly detected a face 
(hits) from those in which they did not detect the face (misses). In the initial analysis, we used an 
LDA-based classifier with temporally windowed EEG amplitude data. The results are shown in 
figure 24. The peak classifier performance was within the 250−400 ms time window and the best 
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classification occurred when the target probability was 0.5. While this may reflect an important 
difference between hits and misses as a function of target probability, it must be interpreted with 
caution because there are also more trials that are included in the classification analysis in that 
condition. 

 

Figure 24.  Pattern classification performance for discriminating 
hit trials vs. miss trials plotted as a function of time  
and target probability. 

We analyzed performance in more detail by attempting to characterize the features of the EEG 
signal that best discriminated between hits and misses. In this analysis, we constructed three 
different classifiers, one that was trained on the amplitude of the EEG data, one that was trained 
on power in specific frequency bands, and one that was trained using both amplitude and power. 
The results of this analysis are shown in figure 25. As with the analyses described above, 
classification performance declined with increasing target probability. This was true regardless 
of the type of input. Performance was lowest when classification was based on power alone. At 
low target probabilities there was a trend indicating that the amplitude only classifier was best, 
but at high target probabilities there was a trend indicating that the amplitude plus power model 
was the best. It must be emphasized that these are merely trends and not statistically significant. 
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Figure 25.  Pattern classification accuracy for discriminating hits from misses 
when using EEG amplitude only, EEG power in alpha, theta, beta,  
and delta, or a combination of amplitude and power. 

7.2 Study 8: Predicting Classifier Failures (SAIC) 

In this study, we analyzed the CT2WS data looking at the temporal dynamics of the classifier 
score. Results from Study 4 indicated that target probability has a dramatic effect on classifier 
score. We hypothesized that whatever condition leads to mis-classification (attentional state, 
temporal lag, internal or external noise, etc.) would be reflected in the temporal dynamics of the 
score. To examine this we used the subject’s customized classifier model to calculate the score of 
each trial at various time offsets (“lags”) before and after the presentation of the stimuli  
(±160 ms). We then sorted these scores into target and non-target trials. For target trials we 
recorded the temporal offset between of the peak (highest) score and stimulus onset. Likewise, 
for non-target trials we recorded the temporal offset of the trough (lowest) score and stimulus 
onset. Figure 26a shows the standard score distribution as a function of this lag index for both 
target and non-target trials. Interestingly, the closer the extreme score (peak or trough) is to the 
stimulus onset the better the classification accuracy. To quantify this in terms of performance, we 
recalculated the AUC for trials with small absolute lag values (figure 26b). This significant 
improvement was consistent over the population (figure 27). 
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Figure 26.  Temporal Dynamics and Classifier Accuracy (one subject). Panel a: Classifier score as a function of lag 
(see text). Panel b: ROC curves for all trials (blue) and trials with near-zero lag values (green). 

 

Figure 27.  Classifier Accuracy Improvement (all subjects). 
AUC values for all trials (all lags) and trials with 
near-zero lag values (best lags). 

While taking into account the temporal dynamics of the classifier score does lead to improved 
accuracy, it does not identify the underlying reason for the improvement. Misaligned trials (i.e., 
nonzero lag index) could be caused by some internal brain state such as attentional or 
preparatory state (Kim et al., 2007; Mathewson et al., 2009). Alternatively, they could be caused 
by some noise source (environmental, subject movement, etc). However, the temporal dynamics 
in the score are most likely due to the natural variability in the evoked (P300) response. This 
variability is also reflected in the reaction time (see Study 9). Further analysis of the evoked 
response is necessary to understand the source of this phenomenon. 
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7.3 Study 9: ERP Latency and Reaction Time (ARL) 

This study focused on neurobehavioral correlations from data acquired from 12 subjects during 
an RSVP paradigm used in the CT2WS program. The analysis focused specifically on the 
relationship between target reaction time and P3 peak latency. Many target classification 
algorithms use features associated with the P3; however, it is unclear what effect if any the 
latency of this component may have on classification accuracy. 

Target images were reviewed prior to experimentation for target detection difficulty. Targets that 
were partly occluded or difficult to detect were excluded from presentation. Target Response 
Times (RTs) were divided into quartiles for each subject. We focused on the fastest and slowest 
performance, which correspond to the first and last quartiles respectively. Quartiles were then 
used as epoching parameters for the EEG data in order to create averaged ERPs for each subject 
in each quartile. The top plot in figure 28 shows target ERPs at electrode Pz for the first (red) and 
last (blue) quartiles as well as the ERPs to non-target stimuli (black) and the average of the first 
and last quartiles (green). While the first and last quartiles have latency differences beginning 
approximately 400 ms post target stimulus, early sensory activation cannot account for this 
relationship; performance quartiles did not change as a function of latency or amplitude in early 
evoked responses as seen in the first positive peak over electrode Oz. 

 

Figure 28.  Target ERPs at electrodes Pz and Oz. 

Further analysis of the RT and P3 peak latency association revealed a consistent relationship at 
the single trial level as well as across participants. Figure 29 shows an ERP image plot of all first 
and last quartile target trials. Trials were sorted by the latency of target reaction time represented 
by the black line. Figure 30 depicts a significant positive correlation between RT and P3 peak 
latency. 
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Neural classification algorithms focusing on P3 amplitude may have increased performance 
when P3 latency information is also considered. Choosing the peak amplitude of the average 
ERP response may mask meaningful performance related information present in the dynamic 
neural activity. 

 

Figure 29.  ERP image plot showing the P3 amplitude for each target trial sorted 
by reaction time performance. 

 

Figure 30.  Correlation between RT performance and P3 peak latency. Q1 = first quartile,  
Q4 = last quartile. 

R2= 0.7433 
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8. Implementation at ARL 

This objective to implement components of the SAIC real-time neural processing system at ARL 
is the first step along the path to transition the results of this project to the Army.  Work this year 
had two parts. First, SAIC provided documentation and support to ARL for their implementation 
efforts. Second, SAIC defined a set of metrics for assessing the performance of systems that 
incorporate neural processing. The metrics are designed to support the evaluation of different 
algorithms and implementations. They will be used to measure improvements in system 
performance as the results of this research are translated into new methods. We begin with a 
description of the real-time system and then discuss the metrics. 

8.1 The SAIC Real-time System 

The SAIC real-time EEG processing system (figure 31) was developed under phase one of the 
DARPA CT2WS program. The principal goal of this CT2WS system was to rapidly identify a 
variety of targets over a broad landscape of ground-level imagery by combing the 
complementary aspects of the computer and human visual system. Computer vision algorithms 
would initially process the scene; identifying potential targets or threats as regions of interest 
(ROIs). These small regions would then be shown to the human user under an RSVP paradigm. 
Finally, the evoked neural response would be used to determine the presence or absences of a 
threat. 

The frontend or computer vision component of this system is not described here. It is assumed 
that the Experimental Control computer already has a database of ROIs. With this assumed 
operation of the system then proceeds as follows: 

1. The user (or subject) is seated in front of the stimulus display screen.  

2. The EEG acquisition system continuously acquires signals from the subject (128 channels 
at 1 kHz). 

3. The subject initiates a session by pushing a button (response pad). 

4. A small set (approximately 10) of ROIs are sent to from the Experimental Control 
computer to the Stimulus Presentation computer and shown to the subject. These ROIs are 
time-stamped using a synchronizing waveform generated by the EEG amplifier (i.e., 
universal clock). The time stamps are also inserted into the EEG record for synchronization 
of the ROI with the corresponding ERP. 

5. After each ROI is presented, the Experimental Control computer pulls the corresponding 
ERP from the EEG Acquisition computer. The ERP is then pre-processed to check for 
artifacts (eye blinks, subject motion, noise, etc). If the ERP is free of artifacts, a linear 
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classifier is then used to score the ROI. If the ERP contains artifacts, it is given a null 
score. 

6. ROIs with high positive (target) or negative (clutter) scores are classified accordingly. 
ROIs with low, ambiguous or null scores are re-cued for subsequent presentation. 

7. The Experimental Control computer builds the next set of ROIs, including any ROIs that 
need to be re-shown (from step 6). These ROIs are then sent to the Stimulus Presentation 
computer for display. 

8. This process (steps 4−7) continues until all ROIs are shown or the subject terminates the 
session via a button press. 

9. Each ROI and corresponding score is displayed for the operator on a results screen that is 
continuously updated.  

The operational progression described above is a high level overview of the real-time system. 
Details regarding the stimulus content, presentation parameters, classification algorithm, and 
scoring procedure are provided in a separate document, Documentation for the SAIC Real-Time 
EEG System.   

 

Figure 31.  Configuration diagram for the SAIC real-time system. 
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8.2 Study 10: Metrics (SAIC) 

We defined a set of metrics to be used in assessing the performance of a system that incorporates 
RSVP and neural processing. The purpose of the metrics is to provide a quantification of the 
improvement, if any, to a system that includes a visual search task such as detecting a target or a 
threat when that task is performed using neural processing and RSVP. The metrics offer a means 
to compare performance against a system that does not use RSVP. These metrics will be applied 
to provide an objective measure of improvement in this project as the prototype under 
development. As part of this study, we captured baseline metrics for the current system.   

Three standard metrics will be used to characterize performance in a system that includes RSVP: 
probability of detection (Pd), false alarm rate, and throughput. These metrics can be computed 
for the system with and without RSVP and then compared. Figure 32 contains graphs comparing 
these metrics for the visual target detection task implemented by SAIC in Study 6.  Here the 
behavioral data comes from the subjects pressing a key when they see a target during the RSVP 
experiment. In this instance for the behavioral condition, throughput is expressed as the average 
rate that the subject progresses through the experiment in clips per minute. This is the true upper 
bound for both the behavioral and automated system. The RSVP system throughput reflects the 
percentage of these trials that were classified. The system will not classify a response if there are 
artifacts such as eye blinks or muscle movement reflected in the EEG signal. Several subjects in 
this study had very few artifact trials and, therefore, maximal throughput. Overall, this result 
indicates that the current state of artifact detection and mitigation is good, but needs 
improvement. In examining the trials that were rejected by the system, we found that many of 
these trials could have been successfully scored despite the presence of artifacts. 

 

Figure 32.  Classifier Performance Summary (all subjects). Panel a: Probability of detection for the classifier is 
matched to behavior; Panel b: False alarm rates for the matched Pd; Panel c: System throughput (clips 
per minute), reflecting the percentage of trials classified (i.e., free of artifacts).   

The SAIC real-time EEG processing system implements a linear classifier that applies a set of 
weights (the neural response model) to the values coming from the individual EEG channels to 
compute a single score, which is then used to classify the response. Thus the classifier produces a 
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score for each stimulus based on the neural response of the subject. A set of metrics for the 
RSVP system can be computed based on an analysis of the classifier output. One such metric is 
the area under the ROC curve (AUC) which is standard for characterizing how well an 
automated algorithm performs, where AUC=1 indicates a perfect system and AUC=0.5 is a 
system performing at the level of chance. Figure 33 shows a single ROC curve for one subject 
from Study 6. Figure 34 shows a chart with the AUC for all subjects. 

 

Figure 33.  ROC curve for a single subject for classifier scores 
generated using a general neural response model 
(in blue) and for scores generated by using a model 
built for this individual (in green). 

 

Figure 34.  Bar chart showing the area under the ROC curve (AUC) 
for all subjects in Study 6. 
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The real-time system uses a threshold of zero for the classifier scores: a score greater than zero 
indicates a target and less than zero indicates a non-target. A separate analysis can be carried out 
to compare the classifier results with the behavioral results by adjusting this threshold. For each 
subject, suppose we set the classifier threshold to the largest number t such that the probability of 
detection for the threshold t is equal to the subject’s behavioral probability of detection. Figure 
35a shows a histogram of this behavioral-matched threshold for the subjects in Study 6. Using 
this threshold, we can then calculate the corresponding false alarm rate and compare it to the 
false alarm rate for behavior. Figure 35b shows that for many subjects, the false alarm rate from 
the classifier is almost as good as, and, in some cases, even better than the behavioral false alarm 
rate. 

 

Figure 35.  Metrics for classifier performance. Panel c: Histogram of the classifier score thresholds the give the same 
Pd as behavioral detection for each subject; Panel b: matched Pd for behavioral and classifier 
performance; Panel c: plot of false alarm rate for behavioral versus classifier with matched Pd. 

If the RSVP task is the first step of an image triage process (Sajda et al., 2003; Sajda et al., 
2010), we define additional metrics to characterize performance.  In this case, the button presses 
or EEG classifier scores from the RSVP component can be used to sort the video clips for 
subsequent review by a human operator. For the behavioral-based system, we can re-order the 
clips so that the clips that elicited a button press are all at the top of the queue. For the RSVP-
based system, the clips are re-ordered based upon score, from the highest score to the lowest. 
The resequencing based on behavioral and RSVP input can be compared with the original 
ordering by examining the accuracy in the following sense.  In figure 36, the re-sequencing of an 
entire session for two subjects is presented. Here, the fraction of targets is plotted as a function of 
sequence index for the 2800 video clips. The resequencing via button press or classifier score is 
bounded on the lower end by the original sequence, where targets and non-targets are presented 
randomly, and the on the upper end by optimal resequencing, where all targets are presented 
before the non-targets. For the two subjects shown in figure 36, the button press initially 
outperforms the classifier, that is, more targets appear at the front of the sequence. After a certain 
percentage of the targets appear, the classifier results begin to outperform the button press.  For 
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the last 10−25% of the targets (for these two subjects), more appear at the front of the classifier-
ordered sequence. 

 

Figure 36.  Re-sequencing accuracy. Fraction of target images presented as a function of sequence index. Lower 
bound: original sequence where targets where presented randomly. Upper bound: optimal re-sequencing 
where all targets are presented before any non-targets. 

The analysis of resequencing accuracy compares the performance of the classifier to a subject’s 
button presses. Often the RSVP-based triage and review will replace a totally manual process of 
looking for targets while stepping through a sequence of images. A metric that is useful for 
comparisons is the number of targets detected per unit time. If the goal of the process is to find 
targets quickly, the best system is the one that results in finding the most targets soonest. Figure 
37 illustrates a useful method for comparing performance.  For the baseline condition, the 
subjects manually review all video clips looking for targets. We assume they view the clips for 
500 ms each and have an average response time of 750 ms.  Assuming the targets are evenly 
distributed through the original sequence, the targets per time graph for the baseline is a straight 
line.  With RSVP-based triage, first the subject performs RSVP; the images are re-sequenced 
based upon the classifier score, and the subject reviews the results. In figure 37, the dashed 
vertical line represents the end of the RSVP period and the red line shows the targets found 
plotted against time.  The area between the red curve and the baseline (positive if the red line is 
above the baseline graph) quantifies the benefit of triage. In this case, the benefit is modest. If we 
assume a presentation rate of 100 ms/image clip, the results are more substantial (figure 37b).  
This metric can help define the parameters for RSVP and inform how an RSVP component 
might be utilized in the crew-station. 
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Figure 37.  Image triage performance. Number of targets detected as a function of time for baseline and triage 
(RSVP-sorted) condition. Dashed line indicates end of RSVP component and beginning of manual 
review. Panel a:  Plot shows the performance in the current 500 ms per clip condition; Panel b: plot 
shows the performance for a hypothetical 100 ms per clip condition (assuming similar classifier 
performance). 

9. Summary of Results 

We summarize the key results from Year 1 in table 4. 
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Table 4.  Summary of the results by study number. 

Result Study 

When RSVP is presented at fixation, there is no performance impact due to RSVP rate. 1 

Performance degrades directly as a function of the distance of the image from fixation.  1 

For a given level of performance, targets presented in the periphery must be more salient than 
targets presented at fixation.   

2 

Behavioral performance degrades as target frequency increases. 3 

Pattern classification performance peaks at 300 ms post-stimulus and is highest when the target 
frequency is 0.1 or 0.25. 

3 

If a classifier is trained on data from one target frequency and then applied to data from another 
target frequency, the performance is degraded. Training with data from a higher target 
probability condition results in the least degradation.  

3 

Classifier scores are inversely correlated with target frequency. 4 

Target frequency can be estimated from the distribution of scores and used to compensate for 
changes in this parameter. 

4 

 Behavioral performance is similar under single and dual task conditions.  5 

Pattern classification performance for the visual task peaks at 300 ms post-stimulus and is 
unaffected by the second task. 

5 

Classifier performs poorly (at chance) on visual stimuli that are shown while the subject is 
carrying out the auditory task only. 

5 

There is no significant difference in behavioral performance for the visual task alone compared 
with the visual and auditory tasks together.  

6 

 There is no significant difference in classifier performance for the visual task alone compared 
with the visual and auditory tasks together (for the subjects with high classifier performance). 6 

Classifier performance degrades for combined auditory and visual tasks for subjects with poor 
classifier models.  

6 

Result Study 

For many subjects, separate classifiers could detect visual and auditory targets. 6 

The pattern classifier can discriminate between successfully detect targets and those that are 
missed based on neural activity.  7 

Classification performance is higher when all post-stimulus activity is used at once (right panel).  7 

Although classifiers using either amplitude or power alone perform above chance, amplitude is 
better. There is little or no benefit when including both amplitude and power together. 

7 

Latency in the ERP and the classifier score predict classifier accuracy and can be used to 
improve system performance. 

8 

Latency in the ERP mirrors the variably in the behavioral response (RT). This variability is 
partially a reflection of the attentional state of the individual. 

9 

SAIC’s current real-time system can achieve performance levels nearing those of behavior (the 
upper-bound in this metric formulation).  

10 

Improvements can be made through 1) better classifier models, 2) Incorporation of attentional 
state and temporal dynamics into classification scheme and 3) enhanced EEG artifact detection 
and mitigation.    

10 
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List of Symbols, Abbreviations, and Acronyms 

AB Attentional Blink 

ACC accuracy 

ARL/HRED Army Research Laboratory/Human Research and Engineering Directorate 

ATO Army Technology Objective 

AUC Area-Under-the-Curve 

BCIT Brain-computer Interactive Technologies 

CT2WS Cognitive Technology Threat Warning System 

DARPA Defense Advanced Research Projects Agency 

EEG Electroencephalography 

ERP Event-related Potential 

fMRI Functional Magnetic Resonance Imaging 

FPR False Positive Rate 

HD-Cog High-Definition Cognition in Operational Environments 

IA Imagery Analyst 

ICB Institute for Collaborative Biotechnologies 

LDA linear discriminant analysis 

MGV manned ground vehicles  

NIA Neurotechnology for Intelligence Analysts 

NTG non-target 

P3 P300 

Pd probability of detection 

ROC Receiver Operating Characteristic 

ROI region of interest 

RSVP Rapid Serial Visual Presentation 

RT Reaction Time, Response Time 

SAIC Science Applications International Corporation 

SOA stimulus onset asynchrony  

TARDEC Tank Automotive Research Development and Engineering Command 

TPR True Positive Rate 

TRG target 
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